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Abstract--With the development of high-power applications, 

especially those on air platforms, power generation systems above 
the megawatt level will be required. Superconducting generators 
can address this need. Recently, several successful rotating 
machinery projects demonstrated the practicality and feasibility 
of the technology using the high temperature superconducting 
BSCCO wire. With progress of the newer superconducting 
YBCO coated conductor to longer lengths, addition improvement 
can be made to these superconducting devices. This presentation 
will address the use of the superconducting generator from an 
airborne perspective and then address the benefits and some 
issues for the employment of YBCO coated conductors in future 
demonstrations. 
 

Index Terms—high-temperature superconductors, YBCO, 
superconducting tapes, superconducting wire, superconducting 
rotating machines, superconducting materials, YBCO coated 
conductors. 

I.  INTRODUCTION 

prominent need of future airborne power systems of 
megawatt-class output is minimizing the size and weight 

of the power generation and ancillary support systems.  One 
approach for achieving higher power density within the 
generator is to maximize the magnetic flux density, which can 
be enabled by superconductors with very high-field ampere-
turns [1], [2]. The newer high temperature superconducting 
(HTS) wire typically takes the form of a thin flat tape as 
opposed to a round wire.  

The central challenge is to effectively integrate the 
superconducting coil and its cryo-cooling subsystem.  This 
issue is magnified when pursuing the higher rotating speeds 
also conducive to increased power density, if the conductor 
and cooling system are rotor-mounted.  The added challenge 
of a power generation system that increases its power density 
is the increased per-unit mass heat generation for a given level 
of losses, requiring closely-integrated and efficient integrated 
thermal management. 

Most power machinery demonstrations to date have used 
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the bismuth strontium calcium copper oxide (BSCCO) 
superconductor, being the first HTS conductor to be scaled 
up. However, a newer yttrium barium copper oxide (YBCO) 
superconductor has been developed that has in the past year 
been scaled to lengths that it can now be used in power 
application demonstrations. YBCO has several significant 
advantages over the BSCCO wire: in-field operation at liquid 
nitrogen temperatures while maintaining high critical currents 
in magnetic fields up to several Tesla, the ability to reduce ac 
losses in the architecture, improved strain tolerance, and 
lower production costs.  Scale-up of the YBCO coated 
conductors at manufacturers has improved the quality and 
length of wire available—from 105 A/cm2, self-field, at 
several centimeters length a few years ago to lengths of 600 m 
and longer with 106 A/cm2 performance [3-4]. 

II.  MULTIMEGAWATT ELECTRIC POWER SYSTEM 

A recent effort by the U.S. Air Force has been to advance 
the power technologies in support of high-power applications 
(HPA) being placed on airborne platforms.  Specifically, with 
the large onboard electrical power demands, it is necessary to 
develop the required power generation, distribution, and 
conditioning technologies required for the airborne use of 
these applications.  One program is the megawatt-level 
electric power system (MEPS). The Broad Agency 
Announcement for the program stated the specific objective 
of the MEPS program was the development and testing of the 
superconducting power system for airborne HPA. 

In 2004, the Air Force Research Laboratory (AFRL) 
contracted with General Electric (GE) to design, build, and 
test a MEPS configuration including a superconducting 
generator, cooling systems, and power conditioning system.  
The cornerstone of the program was a high-temperature 
superconducting (HTS) generator which would demonstrate 
technologies leading to later HTS machine designs with 
specific power ratios exceeding 4.0 kW/lb (8.82 kW/kg).  The 
machine configuration chosen by GE for design was a 
homopolar inductor alternator (HIA) which locates the 
superconductor coil within the stator, thereby eliminating 
rotational loads on the coil while also simplifying the rotor 
design to a more rugged structure.  Removing the HTS coil 
from the rotor also allows higher rotating speeds that can 
again also improve overall power density. 

GE completed its build of a 1-megawatt class HTS 
generator in early 2007 and the following tests provided the 
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first successful full-power run of an HTS machine for the 
USAF.  The generator produced 1.3 MW output at its design 
speed of 10 krpm, and achieved 97% overall efficiency even 
accounting for cryo-cooler losses.  This generator 
demonstration not only validates the HIA concept, but also 
advances multiple technologies that can support future HTS 
machine designs utilizing the latest-generation 
superconductors such as YBCO.  GE is also performing the 
conceptual design of a 5-MW HIA baselined to meet the 
above-noted specific power ratio goal. 

 

III.  YBCO COATED CONDUCTORS 

As mentioned, the YBCO coated conductors offer many 
advantages over the previously used BSCCO tape. This point 
is underscored by the fact that many companies are switching 
to the production of YBCO tapes from the BSCCO tapes as 
they scale-up the processing of the YBCO conductor. In the 
U.S. the production of BSCCO has be completely halted with 
sales limited to existing stocks. The newer YBCO conductor 
provides “form, fit, and function” replacement to have a 
minimal impact on application usage. Table I provides a 
comparison of the two conductors. 

Because YBCO coated conductors are now made reel-to-
reel in hundreds of meter length, research and development 
needs to shift toward improving the conductor and applying 
the conductor to the variety of applications it has, in this case, 
the generator. This does not mean that additional 
improvements to the basic conductor architecture are not 
necessary or possible. In the discussion that follows 
improving the critical current and minimizing ac loss are 
briefly discussed. 

 
 

 TABLE I 

BSCCO WIRE AND YBCO WIRE COMPARISON. 

Property BSCCO 
(now)a 

YBCO 
(now)a 

YBCO 
(near term)b 

Cost (relative) 16-20 50-100 3-5 

Operating Temp. 
(in-field)  

22 - 35 K 45 - 55 K 60 – 70 K 

JE – Eng. Current 
Densityi 
77 K, self-field 

7 – 17 kA/cm2 8 – 29 kA/cm2 15 – 50 kA/cm2 

JE – Eng. Current 
Density 
65 K, 2.5T//c 

negligible 2.5 – 8 kA/cm2   8 – 20 kA/cm2   

Tensile Strain 
77K 

0.10 - 0.40% 0.30 - 0.45% 0.30 - 0.60% 

Length Up to 1.5 km Up to 600 m 1 – 1.5 km 
bBased on manufacturer’s data sheets. BSCCO data composite from 

American Superconductor Corp. and Sumitomo Electric, Inc.; YBCO data 
composite from American Superconductor Corp. and SuperPower, Inc. 

bProjection based on trends. 
dRelative based on some reported $/kA-m, 77K SF, figure of merit data. 

  

A.  Higher Currents 

An important parameter for enabling superconducting 
generator operation at higher temperatures or to provide a 
more compact winding is increasing the amount of current the 
HTS tape can carry. This can be done by improving the in-
field performance of the critical current density (Jc) in the 
superconductor. It can also be done by improving the overall 
critical current density of the wire (JE) since the 
superconducting layer is only a fraction of the composite 
wire’s architecture. However, the metallic foil that serves as 
the substrates has been reduced to 50 – 80 µm already and a 
greater focus should be on increasing the critical current of 
the superconducting layer in the coated conductor architecture 
[5] – [7]. Minimum mechanical strength of the substrate will 
also be necessary and prevents making the substrate 
arbitrarily thin. 

Improvement in the Jc of the superconducting layer itself 
can be done by incorporating magnetic flux pinning centers. 
Nanoparticles have been demonstrated as the best pinning 
centers to date and can be incorporated by a variety of 
methods [5], [8] – [14], being first demonstrated by Haugan 
et al.  Recently, nanoparticulate pinning has provided over 
two orders of improvement to the Jc of YBCO at several tesla 
using a BaSnO3 (BSO) nanoparticle [13], [14]. There is some 
initial success in transitioning the nanoparticle approach to 
industrial methods [15], but the full value of improvement in 
industry is yet to occur and deserves a focused effort to fully 
transition the technology to industrial processing methods.   

A potential avenue to incorporate these pinning centers by 
a variety of processing methods is the addition of minute 
amounts of deleterious elements. Minute doping in this 
manner (≤1% of Y substitution by a deleterious rare earth) 
into high quality YBCO thin films has been demonstrated to 
provide improvement of the film’s in-field Jc [12]. It was 
accomplished without additional optimization of the 
deposition parameters in [12]. Interestingly, instead of typical 
site substitution for Y, the deleterious rare earths seem to 
form nanoparticulates, explaining why the enhanced 
performance over standard rare earth substitutions by the 
preferred elements.  

 

B.  Lower AC Losses 

There are several channels of energy dissipation in a 
rotating machine, such as a generator. Specific to the 
superconducting winding are eddy-currents in the stabilizer 
and substrate, weak ferromagnetic losses in Ni-W substrate, 
but the most detrimental is the loss in the superconducting 
layer (hysteresis loss) [22-28]. This is especially true for high 
speed generators, since the losses increase with increasing 
frequency 

In the field windings ac asynchronous feed back is 
possible. Shielding must be added to protect the conductor 
from ac losses. This issue was pointed out in a Westinghouse 
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project funded by the U.S. Air Force. In this contract 
Westinghouse built a 5 MVA, 400 Hz machine where the 
electromagnetic shield on the rotor was considered a major 
problem of the superconducting machine. Excessive heating 
in the shield resulted from the load-induced varying fields 
[23].  A more ac-tolerant YBCO conductor may potentially 
eliminate the shielding requirement, but will at least lower the 
amount of necessary shielding. 

A way to reduce the hysteresis loss in the YBCO coated 
conductors is by dividing them into a large number of parallel 
filaments separated by narrow resistive barriers. This was 
originally proposed by Carr and later documented in [24]. The 
physical mechanism of loss reduction as the result of 
subdivision of a uniform superconducting film into many 
filaments is similar to that in normal multifilament conductors 
(such as Litz wire). The total hysteresis loss in the conductor 
comprised of many superconducting stripes is reduced in 
proportion of the width of an individual stripe. An experiment 
on small samples of YBCO films deposited on LaAlO3 
substrate has confirmed the validity of that suggestion [25].  

Measurements of the magnetization losses in actual 
multifilamentary YBCO coated superconductors have also 
been reported recently [26-33].  In Refs.[26] and [28] two 10 
cm long samples of YBCO-coated conductor, one control and 
the other striated,  were subjected to a magnetic field normal 
to the wide face of the tape and varying at different linear 
frequencies in the range 11-170 Hz with a magnetic induction 
amplitude up to 70 mT.  The total loss in the multifilament 
conductor was reduced by about 90% in comparison with the 
uniform conductor at full field penetration at a sweep rate Bf 
as high as 3T/s [28]. Similar results were obtained on 
RABiTS conductors [29]. 

It should be noticed that all above mentioned experiments 
have been carried out on coated conductors without copper 
stabilization. Only a thin (a few microns thick) silver layer 
was covering the YBCO film. Truly stabilized multifilament 
coated conductor will require the copper stabilizer to be 
striated in the same pattern as the underlying superconducting 
film.  

SuperPower, Inc. has taken efforts recently to scale up the 
filamentary concept to reel-to-reel processing using 
lithography techniques [5]. The system used provides narrow 
grooving to minimize the amount of superconductor removed. 
Slitting to smaller widths than the standard 4 mm tapes has 
also been demonstrated. They have also been able to twist the 
YBCO coated conductor while maintaining at least 95% of 
the original critical current. 

 

IV.  CONCLUSION 

The newly available YBCO coated conductors offer many 
advantages over the BSCCO tape previous used in motor and 
generator demonstrations. The benefits of compact high-
power superconducting machinery, such as the MEPS 
generator demonstrated by GE, can be enhanced by use of the 

YBCO wire. A comparison of the properties of the YBCO vs. 
BSCCO shows that it not only is superior is several functional 
aspects, but will also cost less. Even so, there is additional 
development that the YBCO wire can use to fully exploit its 
capability in machines. 
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